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CRACK TIP FIELDS FOR FAST FRACTURE
OF AN ELASTIC-PLASTIC MATERIAL

by

J. D. Achenbach, M. F. Knninen, and C. H. Popelar

INTRODUCTION

An expanding Interest is developing in the analysis of rapid

unstable crack propagation in which dynamic (inertia) effects may not be

negligible. While this interest has been motivated n part by intellectual

curiosity in a new and fertile applied mechanics research area, there is

also a growing realization that many engineering applications for this

technology exist. There are many practical situations in which the result

of large scale unstable crack growth is completely unacceptable. To pre-

clude such catastropic occurrences, it is important to develop treatments

for the arrest of rapid crack propagation. Because crack arrest must

logically be viewed as the termination of fast fracture, attention must

be focused on the dynamic crack propagation process.

For the most part, dynamic fracture mechanics is now based upon

elastodynamic solutions; for example, see Kanninen (1978). Yet, most struc-

tural components where fracture is a concern employ tough ductile materials

where it is unlikely that the basic assumptions of linear elastic fracture

mechanics (LEFH) are valid. In addition, recent work has begun to raise

serious questions about the extent to which the dynamic fracture toughness

is truly a material property, even when LEFH conditions are satisfied.

Thus, it is necessary to develop nonlinear dynamic elastic-plastic frac-

ture mechanics treatments.
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Because unloading may take place in dynamic crack propagation,

a daformation theory formulation is undesirable. A flow theory

approach is required to account for the elastic unloading in the wake of

the crack tip. An asymptotic solution near the tip of a crack propagating

dynamically in antiplane strain (Mode II) conditions using such an approach

has already been given by Achenbach and Kanninen (1978). Their results

determined the form of the crack tip singularity and the angular position

at which elastic unloading commences. Clearly, this kind of information

is needed In order to devise a finite element or other solution procedure

for dynamic crack propagation and arrest analyses.

The work described in this paper extends the Achenbach-Kanninen

approach to Mode I crack growth. Results for both plane stress and plane

strain conditions are given. These solutions are based upon J2 flow theory

with a bilinear stress-strain relation which allows elastic unloading.

The problem formulation leads to a nonlinear eigenvalue problem which is

solved using an Iterative numerical solution procedure. Confidence in

the results was attained by comparisons with the results obtained by

Amazigo and Hutchison (1977) for the special case of quasi-static crack

growth at low crack-tip speeds when the dynamic effects are negligible.



THE SOLUTION PROCEDURE

Problem Formulation

The fields of stress and deformation are referred to a coordinate

system whose origin Is attached to the moving crack tip. The system of coor-

dinatas is shown in Figure 1. The crack is located In the (zxz3)-Plane where

the x3 axis coincides with the crack front and Xl is the direction of crack"

advance. The relevant displacement components are ul(xl,x2,t) and u2(]lx2,t),

where t is time.

In the following the material derivatives with respect to time will

frequently be needed. These are defined as

C') -~ t 8- (1)
at 1x

(2 _ -a_ 2v(t) 1+ [v(t)]2 a2 (2)(" --a 2 - 0(t) - - +
at 2 x1 ax 1at ax 2

where v(t) is the speed of the crack tip. Notice that v need not be constant

and is only subject to the conditions that v(t) and dv/dt are continuous functions.

For the case of plane stress, the non-vanishing stress components are

all- '12 ' o21, and '22. The equations of motion are of the form

a ,T  ; y,8 - 1,2 (3)

where the second-order material time-derivative is defined by (2)*.

The constitutive equations in the elastic-plastic material take into

account strain-hardening characterized by J2 flow theory and a bilinear effective

*In the following, Greek minuscules have the values 1,2 whereas Latin minuscules
have the values 1,2,3.
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stress-strain curve. This curve is shown in Figure 2. Let a , denote the

yield stress in tension, E Young's modulus, and a - Et/E, where Et is the

slope of the bilinear stress-strain relation in tension for stresses in excess

of % . The effective stress is defined as

a - ( s=,)1  (4)

where si is the stress deviator. The constitutive relations for an elasti-

cally Isotropic solid may then be written following Amazigo and Hutchinson

(1977):

loading (a to):

Ec &£ - a[(l + v)6,t - VCaIj] + (3 a) ( - a)sj (5)

unloading (6 < o):

E.~i *a[( + v)6i -v6k6. ](6).

ij iij v kk 6 1  6

where v is Poisson's ratio.

Field Equations for a Near-Tip Analysis

In this paper, certain a-priori assumptions are made with respect to

the general nature of the deformation in the imediate vicinity of the crack tip.

Explicit expressions for the near-tip fields will be derived using these assump-

tions. It will then be shown that the required boundary and continuity condi-

tions are satisfied.

It is assumed that ahead of the crack tip a plastic loading zone

exists which is bounded in the near-tip region by radial lines emanating from



the crack tip at angles 0 - +e . This is shown in Figure 1. An elastic unload-
-p

Ing zone is assumed for l ei > p The possible presence of a plastic reloading

zone for 191 near v is neglected In this paper. Conceptually, it is possible to

Include such a reloading zone. But, just as for the quasi-static case investi-

gated by Amazigo and Hutchinson (1977), it is expected that the influence of re-

loading Is not significant enough to justify the computational complications

that uould be required to treat it.

In the plastic loading zone, asymptotic solutions near the crack tip

of the general form

y -KvU (e) r (7)

are sought. Here, K is an amplitude factor, while Uy(O) and s are to be deter-

mined. In an asymptotic analysis, only the lowest orders in r need to be re-

tained. This means that /at can be neglected compared to -v(t)a/x 1 in (1).

Thus

C) -v(t) ax (8)

1

By using the relations

a rose sine a
ax1 r r 3 6

and

sine a CoO e (10)

the strain rates corresponding to (7) are then computed as



6 w

ll W K v [a cose - u ine] ra-1  (11)

122 " K v [a U2 Cosa + Cosa] re-1  (12)

t12 -- Kv [s sine + cose+ a 2 coo a- U2 sine] rs' l  (13)

where ( )' - d/dO. Also by definition

{0, oe, a i K E (Z1 i(e), Ea(e), s11 (e) rs  (14)

and

{ &i*j 6 e'I K E v {±-l(e), ie(e), (6)) ru-i (15)

By virtue of (8) and (9), the following relation holds

ij - aZij cose + zl sine (16)

Analogous relations hold for e(0) and S (6). Also

S (17)
iJ 1 3J kk J

2 3 S )1/2 (18)

By substituting (7) and the first of (14) into the equations of motion

(3), we obtain in the plastic loading zone near the crack-tip

" Zl Cos - sI sin e + a uine + 1 cose- 82 (- 1 Cosae + s ,inC) (19)

" Z12 Cos- ZI2 sine+ a r22 sine+ 2cose- 2 (-s U2 cose +u 2 sine) (20)

where

B- vic , C (E/)1 /2 . (21)
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Substitution of (11) through (18) Into the constitutive relations (5) and (6)

yields

4. t, cosO-61 si CLw l -(1a) S (22)

4a U2 SO+ 2 COB] a 4(+v) '12  vZk] + .2 ('-) (23)S2

61 sine + iU,.cose + a U2 cose - 6; sine- 2 a (1+v) i1
(24)

+ 3 (1-) 1 Z12 e

The unknowns in these equations are U and tys.

The above formulation was derived for plane stress conditions. For

the case of plane strain, we have the condition L33 ' 0 and the nonvanishing

stress 033. It follows from (5) and (14) that the additional relation required

for determining Z33 is

a [(1 + v) £33 via] +2 (1- a) zl s33 e - 0 (25)

No other changes are needed.

Corresponding equations for the elastic unloading region can be

obtained from the work of Achenbach and Bazant (1975). In the elastic region

the displacement rate must satisfy for plane strain the equation

(0 + 06YY + 1A 85 .Y - Pu 6 . (26)

where X and v are Lame's elastic constants. We introduce the displacement-rate

potentials 4 and j through
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1 3X +x lax 2 44 ltL(27)
1 2 2 "x 2  ax1

It is then not difficult to show that Ul and 2 ill satisfy (26) if and

are solutions of the wave equations

_,- (;)" ; 2 _ ( + 2.)/p (28)

CL€L

1*. 2
-( cT -/ (29)

cT

In the near-tip region, the stresses in the elastic unloading zone may be ex-

pressed In terms of j and *'by

-W a122 - i -ax 1  aSx1  ax 2

-v .o2 2 a + (02 - 2) (31)
21 ax1 2 x 2 x

where we have used (8).

Let us now consider solutions of (28) and (29) of the general forms

* - K v 0(0L* C)rP, L - v(t)/cL (32)

- K v ;(O Te)rP, 0 T - v(t)/c T  (33)

Solutions of this kind follow immediately as a slight generalization of Equations

(22) and (23) of Achenbach and Bazant (1975) as

*22 2eP2

;02.8) ( - 0L sn6)/2 (A sinp(c - v) + B cosp(c - w)) (34)

L
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2 (1 - sT2inO) [C sino(w - it) + D cosp(w -)] (35)

where
.2.1/2

tan w - (1 - 02L tane (36)

tan C - (1 - T tane (37)

Defining

- K v eMl()P-1 (38)
Y Y

we find the following relations on the basis of (27) and (9-10)

b1 - p cose 9 - sine 4' + p sine + + cose 4' (39)

el - P sine 4 + Cose ' - p cose + + sineY' (40)
2

The governing equations for conditions of plane stress in the elastic region

can be obtained from the above by replacing X by V/(l - v).

Boundary Conditions

The governing equations in the plastic loading zone, (19) through (24),

and the general forms of the solutions in the elastic unloading zone, (34)

through (40), must be supplemented by boundary conditions at e - 0 and 6 - it,

and continuity conditions at e - e . By virtue of symmetry, the following con-F p
ditions hold at e - 0.

V2 - 0 (41)

-12 0 (42)

ii 0 (43)

Equations (30) and (31) together with the conditions that a21 and 022 vanish

at 8 - s yield the following relations

hL/
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2  2) pB - 2p (1 - 82)1/2 C- 0 (44)

2p (1- )l/2 A + (S- 2)p D 0 (45)

Thus, the displacements and the stresses in the elastic unloading zone can be

expressed in terms of two unknown constants, say A and B.

Now, consider the conditions at 0 - 8 . An obvious condition follows
P

by comparison of (7) and (38) as

s - p - i (46)

Since 0 - 0 separates the plastic loading zone from the elastic unloading zone,P

6e must vanish there. This implies that i vanishes at 8 - p ;i.e,

-s E cose+ r' sine = 0 (47)• •

Continuity of traction-rates across 8 - 8 requires chatP

[z6l = 0 and [ er 0 (48)

Here the following notation has been used

lim( )- lIm( )
(49)

e* 0 e ee
P P

Displacement-rates are also continuous at e - p. Consequently,

[0] - [U 0 ] - [u1] - [U2
] -0 (50)

Since [Ur] - 0, we have [ r] 0. Then, since X - 0 and -0, it follows
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from (5) and (6) that [ir] - 0. This result, together with (48), Implies

[6 I - 0. From this it follows that [L yI - 0. Since the strain rates and

the displacement-rates are continuous, it follows from (11) through (13) that

[UP] - [UP] - 0 (51)

at 0 - 0p

Since explicit expressions for the fields in the elastic unloading

zone are available, the continuity conditions (50) and (51) can be used to

generate boundary conditions for the domain 0 0 < 0 . The two unknown con-

stants in the unloading zone, A and B, can be expressed in terms of U1 (e)

and U2(p ) by the use of (49). Next, the quantities (U 1) and (i), which

are now in terms of U1 (ep-), u2 (ep-), s, 0p, OL and ST are computed and the

continuity conditions (50) Imposed. This yields general relations of the forms

U p(8p) - a1 1 (S,0) U1 (ep-) + a1 2 (S,0 p) U 2 (e-) (52)

i (P- - a 21(sep) 61 (e/) + a22 (.,) U2 (e (53)

The functions aY (8,e ), which also depend on 0L and T , are rather lengthy, and

they are not reproduced here.

Numerical Solution

Equations (47), (52), and (53) provide a set of boundary conditions

for the domain 0 8 < 0 . The governing equations for this domain are givenSp

by (19) through (24). The boundary conditions at 0 - 0 are given by (41)

through (43). The unknowns are the functions depending on 0, such as U1(6),

etc, as well as the values of ep and a. The problem defined in this manner is
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like a nonlinear eigenvalue problem, similar to, but more complicated than

the one discussed for the anti-plane case by Achenbach and Kanninen (1978).

The problem must be solved numerically as discussed in this section.

When (16) is used to eliminate ii in (19) through (24) and (47),

the latter can be written in matrix form as

D(S )Y + R y - 0 (54)

where

e 1-[U 62- 11' E22' 112' 331 (55)

in which the superscript T denotes the transpose. The elements of the sym-

metric, square matrices D(S ) and R are given in the Appendix.

In preparation for integrating (54) numerically, it is convenient to

normalize the 6-variations by taking I e(0) - 1 and defining

q a Zll(0)/Z22(0) (56)

The nonlinear two-point boundary value problem defined by (40) through

(43), (50) and (54) through (56) is solved by the shooting method. For pre-

scribed values of a and 0 and assumed values of s and q, (54) is numerically

integrated over 0 3 0 until (47) is satisfied at a certain 0p. A check is made

to determine whether or not the continuity conditions, Equation (51), are satis-

fied for this 0p. If not, Newton's method is.used to establish new values of

s and q and the procedure is repeated until (51) is satisfied.

A predictor-corrector method was used to integrate Equation (54).

If y, denotes the solution at e - iA, then y+l at e - (i+1)A6 can be written

as.+l + 41 A8+C Ae 2 /2 (57)

L " ! i
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and

!, + C(58)

The coefficient vector c is determined by numerical iterations; i.e., for an

assumed g (57) is substituted into (54) to determine y'+, and a new estimate

for c is found from (58). This procedure is repeated until yi+l agrees with

its previous iterant to six significant figures. Typically two iterations were

sufficient and the method proved to be stable for a as small as 0.005 whereas

the finite difference technique used by Achenbach and Kanninen (1978) was found

to be unstable for a < 0.1. To commence the numerical integration yo and Yo

are required. These can be obtained by introducing Taylor series expansions

about 0 - 0 for D, R and y Into (54) and equating coefficients of 00 and el to

zero. For the boundary conditions (41) through (43) and condition (56), yo and

are given in Appendix.

-oI
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RESULTS AND DISCUSSION

The numerical solution was checked by comparing it with the known

elastic solution and the quasi-static, linear strain-hardening solution of

Amazigo and Hutchinson (1977). For this comparison it is not possible to

consider numerically the limiting case 0 - 0 instead, B - 0.001 was used.

The computed values of a and 0p were found to agree with Amazigo and

Rutchinson's values through four significant figures for all of the values

of a that they reported; i.e. from a - .005 to 1.0.

For a given value of a, there exists a limiting crack speed above

which the numerical integration algorithm failed to converge to a non-

positive value of a. This occurred whenever the crack speed was greater

than the Rayleigh wave speed based upon the tangent modulus; i.e.

whenever

0 > 0.57 a1/2 v - 0.3 . (59)

where 0 is given by Equation (21).

Numerical values of a and 6 for the condition of plane stress arep

given in Table 1 for selected values of a and B and for v a 0.3. Plots of a

versus a appear in Figure 3. It is apparent from this figure that if the crack

speed is less than approximately one-half of the Rayleigh wave speed based upon

the tangent modulus; i.e., if

0 < 0.3 a1 / 2  , (60)

the order of the stress and strain singularity does not differ significantly

from that for the quasi-static condition. The stress distributions in the

loading region for B - 0.25 and a - 0.3 are shown in Figure 4. These may be
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compared with the quasi-static distributions for a - 0.3 depicted in Figure 5.

While the differences are not great, the largest difference occurs for 1 1.

Numerical values of a and e are sumarized in Table 2 and plots ofP

a versus a appear in Figure 6 for conditions of plane strain and v - 0.3. A

comparison of Figures 3 and 6 reveals that inertia effects have a more pro-

nounced influence upon the order of the singularity for plane strain than they

do for plane stress. The plane strain distribution of stresses in the loading

region are shown In Figures 7 and 8. Here differences between the quasi-static

distributions of Figure 7 and the dynamic counterparts of Figure 8 are more

perceptible. In both instances the high triaxiality in the loading region is

readily apparent.
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CON.CLUSIONS

A basis for the analysis of rapid crack propagation taking direct

account of crack-tip plasticity has been provided in this work. Explicit

determination of the crack tip singularity and the angular position at which

unloading takes place has been made for both plane stress and plane strain con-

ditons. It was found that, in both conditions, the results are much more sen-

sitive to the ratio of the slopes of the two portions of the bilinear stress-

strain relation used then to the crack speed. This indicates that, for a

singular finite element dynamic crack propagation solution procedure, only

modest adjustments in the crack tip element formulation will be necessary to

accosodate changes in the crack speed.
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APPENDIX

The nonzero elements of the symetric matries D (St) and 5 for

plane strain are as follows. Note, for plane stress, the last column in S

and p (S 1 ]) and the last row in 1,, y .yo, and D (S1j) are deleted.

DU D 2 - 2sine (Al)

D1 3 -D31 -25 - D52 - sine (A2)

D15 D51 -D2 4 - D4 2 ' - cose (M)

D 3 35 - ( 1  ) jsi. O a)$M).22

Me2 9(1 a) 4] sine (A)

D 9( - sine (7)

.CD 
!2 

Z 1 s 2 2-

9(2 a) sine (M)
D D ( - [ ) 5-32] sine (A7)
36 4 J

a

............. .D . . ) . . .D 34 D 43  4a - ~ sine (AS)

9(1 - 0) S12  12 sine (9D 5 D 5 3 2a Al

D 9(l -a) ~1 3 sine A)
D4 (l a 212 sin (All)
45 54 2a
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D D w 9(l s)ine-2 A13nD56 D65 2ci 2 ( 23)
e2

- R22 - - so 2cose (A14)

13 ' R31 " R25 " R52 ' s cone (A15)

R1j5 - R51 - R24 - R42 - - s stne (A16)

R3 3 " R4 4 " 6 6  - cose 1A17)

34 mR43 -R36-R 63 -R46 R64 . +V) Cosa (A18)

R55 - " [2(l+ V 3(1-) )+ "  (A19)

The values of y and y' at 8 m 0 are

TYo" E[a, o, q, 1, o, S] (A20)

and

,T . r[o, b, o0, , c, 0] (A21)

wbere

1- (1+ q2 + g2 q _qg &)- 1/2  (A22)

a (g +1)j. +] ai (A23)

b s(S+ q) - (A24)

c- -s (0 2 a + q) (A25)

a (a +1) [I- +V] • (A26)



TABLE 1. PLANE STRESS RESULTS

a\B 0.1 0.25 0.40 0.5

1.0 -0.500 -0.500 -0.500 -0.500

0.7 -0.460 -0.457 -0.439

0.5 -0.419 -0.411 -0.371

0.3 -0.355 -0.339

0.2 -0.306 -0.282

0.1 -0.232

6
OP

1.0 1.408 1.496 1.706 0.750

0.7 1.426 1.516 1.712

0.5 1.425 1.517 1.719

0.3 1.401 1.498

0.2 1.370 1.475

0.1 1.304



TABLE 2. PLANE STRAIN RESULTS

u\0 0.1 0.25 0.40 0.5

5

1.0 -0.500 -0.500 -0.500 -0.500

0.7 -0.472 -0.468 -0.445

0.5 -0.440 -0.426 -0.336

0.3 -0.369 -0.320

0.2 -0.292 -0.161

0.1 -0.180

6

1.0 1.550 1.630 1.771 0.602

0.7 1.624 1.699 1.798

0.5 1.718 1.768 1.834

0.3 1.871 1.847

0.2 1.967 1.802

0.1 2.091
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FIGURE 1. CRACK TIP GEOMETRY
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FIGURE 2. BILINEAR STRESS-STRAIN CURVE
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FIGURE 6. ORDER OF THE CRACK TIP SINGULARITY IN PLANE STRAIN
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FIGURE 7. DYNAMIC CRACK TIP STRESSES IN PLANE STRAIN
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FIGURE 8. QUASI-STATIC CRACK TIP STRESSES IN PLANE STRAIN


